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In this paper we introduce a new version of ENO (essentially non-
oscillatory) shock-capturing schemes which we call weighted ENOQ.
The main new idea is that, instead of choosing the “smoothest” stencil
to pick one interpolating polynomial for the ENO reconstruction, we
use a convex combhination of all candidates to achieve the essentially
non-oscillatory property, while additionally obtaining one order of
improvement in accuracy. The resulting weighted ENQ schemes are
based on cell averages and a TVD Runge-Kutta time discretization,
Preliminary encouraging numerical experiments are given. © 1994
Academic Press, Inc.

1. INTRODUCTION

In this paper we present a new version of ENO (essen-
tially non-oscillatory} schemes. The cell-average version of
ENO schemes originally was introduced and developed by
Harten and Osher in [ 1] and Harten, Engquist, Osher, and
Chakravarthy in [2]. Later Shu and Osher developed the
flux version of ENO schemes and introduced the TVD
Runge-Kutta time discretization in [3,4]. The ENO
schemes work well in many numerical experiments. The new
ENO schemes which we cali the weighted ENO schemes are
based on cell averages and the TVD Runge-Kutta time
discretization.

The only difference between these schemes and the
standard cell-average version of ENO is how we define a
reconstruction procedure which produces a high-order
accurate global approximation to the solution [rom its given
cell averages. The cell-average version of ENQO schemes
altempts to avoid growth of spurious oscillations by an
adaptive-stencil approach, in which each cell is assigned its
own stencil of cells for the purposcs of reconstruction. For
cach celi the cell-average version of ENO schemes seleets an
interpolating stencil in which the solution is smoothest in
some scnse. Thus a cell near a discontinuity is assigned a
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stencil from the smooth part of the solution and a Gibbs-
like phenomenon is so avoided (see [5]). The weighted
ENO schemes developed here follow this basic idea by using
a convex combination approach. in which each cell is
assigned all the corresponding stencils and a convex com-
bination of all the corresponding interpolating polynomials
on the stencils is computed to be the approximating polyno-
mial. This is done by assigning proper weights to the convex
combination. To achieve the essentially non-osciliatory
property as the cell-average version of ENO, the weighted
ENO schemes require that the convex combination be
cssentially a convex combination of the interpolating poly-
nomials on the smooth stencils and that the interpolating
polynomials on the discontinuous stencils have essentially
no contribution to the convex combination. Thus, as in the
cell-average version of ENO schemes, a cell near a discon-
tinuity is essentially assigned stencils from the smooth part
of the solution and a Gibbs-like phenomenon is also
avoided. In addition to this, the convex combination
approach results in the cancellation of truncation errors of
corresponding interpolating polynomiais and improves the
order of accuracy by one. Another possible advantage of
weighted ENO is smoother dependence on data which may
lessen some of ENO’s oscillatory behavior near convergence
and may help in obtaining a convergence proof.

In Section 2 we introduce some notations and basic
notions and give the TVD Runge—Kutta time discretization.
In Section 3 we describe the procedure of reconstruction
from given cell averages. In Section4 we present some
preliminary numcrical experiments.

2. BASIC FORMULATION AND TVD RUNGE-KUTTA
TIME DNMSCRETIZATION
We consider a hyperbolic conservation law

U, +.f(“).r=0s

2.1
u(x, 0) = ug(x). 1)

Let {/;} be a partition of R, where I,={[x,_,,, x,;,,,] is
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the jth cell, x,, ,» —X;_,»=h. Denote {#i,(-, #)} to be the
shiding averages of the weak solution u(x, 1) of (2.1), ie,

(- z)=]1—1j u(x, 1) dx.

i

(2.2)

Integrating (2.1) over each cell J;, we obtain that the sliding
averages {i,(-, 1)} satisfy

B 0= =5 Ll 0) = S0y DT (23)

SR

To evaluate each (9/dr) (-, 1), we need to evaluate
Sflu(x, 1)) at each interface x,, . First, from the given cell
averages #={i;} in which &, approximates u,(-, ), we
reconstruct the solution to obtain R(x)= {R;(x)}} which is
a piecewise polynomial with uniform polynomial degree
r—1, and in which each R;(x) is a polynomial approxi-
mating u(x, t} on I,. We shall show how to obtain R(x}
from u={&;} in Section 3. Next, at each interface x;, ),
R(x) may have two approximating values R,(x,, ;) and
Ry (x;2) for ulx; . 12, t). We need a two-point Lipschitz
monotone flux A(-, -) which is nondecreasing for the first
argument and nonincreasing for the second argument.
Some possible choices are

(1) Engquist—Osher,

hE°(a, b) = Jb min{f(s), 0) ds
0

+J.d max( f'(s), 0) ds + f(0); (2.4)
0
(1) Godunov,
G _min, ¢, < f(u) if a<h,
ke, b)_{maxa;u;bf(u) it asp 2
(iti) Roe with entropy {ix,
fla) if f'(w)=0
for u e [min(a, ), max{a, b)],
h¥F(a, b) =< f(b) il f{u)y<0 (2.6a)
for ue [min(a, ), max{a, b)],
h ¥ (a, ) otherwise,
where AL (a, b) is defined as
W (a, b)= 1 fla) + f(b)— B(b—a)], (2.6b)
p= | (ue)l.

min{a,b) < v < max(a,b)
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We approximate  f(u(x;,,,7)) by ;’-(Rj(xjﬂjz)s
R, \(x;,12)) and  flulx;_ 5, 1)) by A(R,_ (x;_ 3
R;(x;_1p)). Therefore,

d _ _
7 (s = L (6), (2.7a)
where
|
Lj{ﬂ) = - E [h(Rj(xj+ 1/2): Rj+ 1(xj+ 1/2))
_E(Rj—l(xj—lﬂ)s Rj(xj—l,fz))]- (2.7b)

In Section 3, in which we introduce the reconstruction
procedure, we shail obtain that, in each ceil 7,

u(x, )= R;(x)+ O(h") Yxel, (2.8)
and at one chosen point of two end points of 7,
u(xF, 1y=Ry(x})+ O "),
i AMY. (2.9)

* * _
xj —x_’,-,l',tz or xj —xj+1’;2.

Here and below we always consider smooth solutions when
we discuss accuracy.

For general upwind schemes, away from sonic points
(where f'(u)=0),

fa)
S(&)

In the regions of /' >0, from (2.7b),

in the regions of /' >0
in the regions of /' < 0.

h(a, b):{

1
Lj(ﬂ) = _E [f(Rj(xj+ 1/2)) _f(-Rj— 1()5_,‘— 1/2))],

and if we choose x* =x;_,, and x* =x;_,, in (2.9), ie,
u(Xjy 10, 1) =R;(X; 1) + OR")
wlx;_yp, )= R, ({x; )+ Oh"*";

hence

A t)=L(a)+ O 7). (2.10)

Plo
o,

Similarly, we shall have the generalized formula (2.10) in the
regions of /' <0 by choosing x*=x, ,,and x} , =x;,,
in (2.9). This will be detailed in Section 3.4. As usual, in the
regions around /' =0 (sonic points), we obtain

a . — r
=, B (2 0= Ly(@) + O(h).
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For high order time discretization, because of (2.10), we
need the (r + 1)th order TVD Runge-Kutta time discretiza-
tions introduced by Shu and Osher in [3]. We need only to
spell out the third- and fourth-order methods, which will be
implemented in our numerical experiments:

For third order, v},
) _ gn
u =y,
S(1) _ =(0) ~(0)
u, =+ L(a™)

_[.2)

ﬁ(”=ﬁ}°’+Lj(ﬂm))
2D = g™ 4 Lt — UL, (@) + LL ()
&j(_a)= éﬂ}cn)_'_ %ﬁ;—l)%- %ﬂjl]_ %L}_(ﬁ(m)
— %Lj(ﬁ”]) + Lj(ﬂm)
it =talt P 4 3a + L (')

+ £ L ().

To complete the construction of our schemes we form our
novel reconstruction procedure.

3. RECONSTRUCTION PROCEDURE

3.1, Purposes of Reconstruction

In this section we present the reconstruction procedure.
The R(x) 1s required to satisfy

(i) Ineachcell J;, ¥xe/ and one chosen point x*e [,
we have

Ry(x)=ulx, 1)+ O(h") (3.1a)

and

R (3.1b)

J'(x}k)

w(xk, )+ O,

where (3.1b) will lead to one order of improvement in
accuracy; see Section 3.4 in this paper.

(i1)

R(x) has conservation form, i.e., ¥},

1j Ri(x) dx =4, (3.2)

nl,

(iii) Every R,(x) achieves the “ENQO property” which
will be specified later.

AND CHAN

3.2. Interpolation on Each Stencil

Following the reconstruction precedure in [2], given the
cell averages {#}, we can immediately evaluate the point
values of the solution’s primitive function #{(x) at interfaces
{W(x,.2)}, where the primitive function is defined as

x

Wix)=|  ulx, dx, (3.3)
RIIT]
where x,. |, could be any interface; hence
u(x, t)y=W’ *iW{ ) (3.4
x, )= (x)—dx x 4)
and obviously
j -
Wi(x; 10)= 3 @;-h (3.5)
i=j

To reconstruct the solution, we interpolate W(x) on each
stencil 8;=(X;_,} (2, X;_, £ 32, s Xj4.1,2) to Obtain a poly-
nomial p;(x), ie.,

R,-(xf+1/2)= W(xz‘+l,'2)e I=f—r ]

Obviously the corresponding polynomtal p; (x) (with degree
r— 1} approximates the solution u(x, ¢), i.e.,

ufx, []=p;(x)+0(h') Vxe(xj—r+l,'21xj+1/2);

see [2].

Also for each stencil S;=1(x;_, , 1,2, X;_r 432>~ X112}
we define an indicator of the smoothness IS; of u(x, ) on S,
as following: First we compute a table of differences of {#,}
on §;,

A[aj—r+l]s A[ﬂj—r+2], s A[aj—l]a
Az[ﬁj~r+|]= Az[ﬂj_.—-'.z], . Az[ﬁj—?.]s

Ar_l[ﬂj—r-v»l:I’
where

A[’}f] = —

A*[a,]=4*""[a,,,]—4*"'[a].

Next we define 7S, to be the summation of all averages of
square values of the same order differences,

r—1

15;= Z

i=1

(Z (A'-ffu,-_,+k])2)/1.
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That is, for r=2,

1§;= [d[u_f—l])2§

and, for r =3,

= ((ALu;_ 530 + (4L, 122+ (47 [, 1)

We observe that if u(x, 7} is discontinuous on S;, IS, ~ O(1),
and if #(x, 1) is continuous on §,, IS, = O(#’). Hence for
each stencil S}, we obtain p/(x) approximating u(x, ) on S,
and IS, indicating the smoothness of u(x, 1} on §,.

In the following subsection, to reconstruct the solution in
I, we shall usc r interpolating polynomials {p}. (x)},_%
on the stencils {S,, . }; ¢, in which all S, , cover the [, to
obtain a convex combination of them, and we shall explore
{1S;, ¢}, to assign a proper weight for each of
{Pj+{x)} 2y in the convex combination for the purposes
of reconstruction.

3.3. Convex Combination of {p; (x)}, 7} for Each Cell 1;

For each cell I, we have r stencils {SH,{ o=
(s kcrvis Xiokorezs o Xigkwin)feoo Which all
include two end points x;_,, and x;, 1, of [;. We also have
r interpolating polynomials {p;, k(x)};_{) on the corre-
sponding stencils {S; ,};Z,. The main idea of the cell-
average version of ENO is to choose the “smoothest” one
from these r interpolating polynomials. For weighted ENO,
instead of choosing one, we use all r interpolating polyno-
mials and compute a convex combination of them to obtain
a polynomial R (x}) as

(3.6)

a—ip' (x)
o Tizga]
where the 2] >0 (k=0, 1,2, .., r—1). Obviously u(x, 1) =
R:(x)+ O(/") in the smooth regions of u(x, t) which is the
purpose of (3.1a). Note that for any k=0, 1,..,r—1,

pj+k(xj—l,"2)= W(xjflﬂ) and pj+k(xj+l,f2)= W(xj+1/2);

hence we achieve the purpose of (3.2):

1 1zt o

};J.! R;(x)dx =n Z ;,E i (e kX 12) = Prasx;_112))
/] k=02Z=

1
= E { W(x),—+ 1',12) - W(-xj— 1,"2)}
re-1 b
« roi’fl aj, (37)
Ko ZiZou]

Note that no matter how we define {a
the purposes of {3.1a) and (3.2).

We specify the “ENO property” of R;(x) by the corre-
sponding {«f};Z}-

1} b, R;(x) satisfies

381/115/1-14
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DerINITION 1. The R,(x) has the “ENO property” if the
corresponding {a }1 74 satlsfy that

(i} 1If the stencil S;,, is in the smooth regions, the
corresponding af satisfy

ol
r—1
= 0“1

=0(1). (3.82)

(ii) If the stencit S, , , is in a discontinuous region of the
solution u(x, t), the corresponding a7 satisfy

i
&
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SO(h"). (3.8b)

Note that, if {a] }; 7} satisfy the “ENO property” (3.8),

r—1

Ri(x)= %

k=0

ai
~r—1_ p}+k( )
fzo o)

will be a convex combination of the interpolating polyno-
mials on the smooth stencils (3.8a) and the interpolating
polynomials on the discontinuous stencils have essentially
no contribution to R;(x) (3.8b).
Define,

ap=CL/(e+15;.,),  k=0,..r—1, (3.9)
where C]7=0(1) and C{>0 will be defined later for
improvement of the accuracy. Note that because IS,
could be zero and 1/x is too sensitive as x is near zero, we
add a small positive number ¢ = 10~* in the denominator.
Note that if the stencil S, , is in the smooth regions,

i

—£—=0(1),

1=0 4!

and if the stencil S;,, is in the discontinuous regions of
u(x, 1),

ai r 2r
——%— < max(0(¢"), O(h*)).
Yiloa]

Hence these {af };_4 (3.9) satisly the “ENQ property” (3.8)
(O < 0(10™ 10)) Here we assume there is at least one
stencil of {S;, .} Z% in the smooth regions.

No matter how we define the constants {Cf}{7}, we
have achieved the purposes of (3.1a), (3.2}, and the “ENO
property” (3.8). However, we shall specify {C{}iZ} for
(3.1b) which will lead to one order of improvement in
accuracy in Section 3.4, our last purpose of the reconstruc-
tion,
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For our analysis we assume that

u(x, 1)eCH 1, {3.10)

I [x,_ e X r12]
For each p;_,(x), we express its truncation error as

e x(x)=ulx, 1} — pj W(x)=W'(x)— p;, o(x)

=E; {W[x: xj+k7r+l,"2’ o xj+k+”2]
r
. H (x—xj+k,:+1/2)}
iI=0
:E W[x, Xj+k_,+1/zs ey xj+k+1/2]

r
H (x_xj+k7.'+l,l2)
=0
+ W{X, xj+k—r+l/2’ Ty xj+k+1/2]

r r
E { l_[ (x_xj+k—[+1/2)}
s=0 LcOixs

= Wx, Kk —ra1/20 o Xjp gy 1/2]

-af(x)+ O™, (3.11a)

where a}’;(x) =310 {H;:O,l#s (x_xj+k—l+1,l2)}'
We express the truncation error for R;(x),

E(x)=u(x,1,)— R,(x)= W'(x) — R,(x)
ISR SN
_EOZ‘I;(; a{(W(x} Pix(x))

r—1 J
=kz=:0_.7%§‘?{ej+k(x]'

Because of the assumption (3.10), V& =0, 1, .., r -1,

IS, 1| S O(h?)
18, —1IS;| < o)
|a(x)] <O(h") (3.11b)

[Wx, Xjpk—ra1/2rom Xjrns12)

—WIx, X, 12s o0 X012 S O(R).

We have, from (3.11a) and (3.11b),

af
y—1 jej+k(x)
k=0 Lut=0 %7

LIU, OSHER, AND CHAN

r—1 aj

k

r—1 jW[X, 'xj+k—r+l,'2""!xj+k+1/2]
k=0 2et=0 %

rai(x)+ O )

r—1 Ci )
= { Z Er'i1—cj a{((x)} WX X o1 o0 X012]
r=0 L%

k=0

+O(h Y, (3.11¢)

The idea is that for one chosen point x*e [x; 1, x;, 2],
we define C to make the first term in {3.11¢) equal 1o zero
and obtain

Ej(x})=0(h"*").

Forx*e[x;,_ ., X;+1,2], we denote #, as the number of

positive terms in {a](x*)};_} and 7, as the number of

negative terms in {a}(x*}},_§; then we define

1 if aj{xr)=0,
»

1 12
W

1, [ar(x})]

Cl= T ale)>0 5y

if aj(x*)<O.

Obviously the C{ are independent of grid size A:

r—1 Cj )
Ej(xf) ={ Z Z_’:F_a ai(xf)} W, Xir s 1j25 - xj‘+1/2]
k=02=0 “%

+ 0k
1/n 1/1,
=1 X s _—}
{uitxj*)>0 P a'i(xj-z}<0 X
x W[X, xj—r+ 1/22 == xj+1/2] + O(hr+l]
=0+ O0(h ")

=00 (3.13)

Remark 1. We have to have 5,21 and 5,21 to
guarantee (3.13).

Thus we obtain that, for one chosen point x* and any
other point xe [x;_,,,, x,, 2], defining C by (3.12) gives
us

Ei(xy=0(h") (3.14a)
and
E(x})= Ok ). (3.14b)

Up to now, we have achieved ail purposes of reconstruc-
tion (3.1a), (3.1b), (3.2), and (3.8).
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3.4. One Order of Improvement in Accuracy Using {3.1b)

In this subsection, we shail see how (3.1b) or {3.14b) gives
us one order of improvement in accuracy by choosing x*
properly in each cell. Let us consider the numerical spatial
approximation (2.7b)

1 )
Lj(ﬁ) = - ﬁ [ﬁ{Rj(' j+1/2), Rj+ l(xj+ 1y2))
_F’;(Rj—l(xjf 1/2), Rj(xj— 1/2))}-

Consider three cells in a smooth region, say cells I;_,, 1,
and /;, |, which are away from sonic points.
If /' (R{x))>0in the cells, we have

1
Li(u)=— 7 [f(Rj(xj+ 2 —f(R;_ x5 ;/2)}]-

In (3.1b), we chose x* =x;, ;» and x} | =x;_;, then by
(3.14b) we obtain that

Rj('xj+ 1/2) - “(xj+ 12 t)= Ej(xj+1/2) =0k 1),
Ry (x5 ipy—ulx;_ o, )=E;_({x;_ 1) = O(h ).

Thus
() = = 5 LIy 3y 0) = fGa, 20 )]+ OU ),
If £(R(x)} < 0 in the cells, we have
L) = — 5 Ry 5y )~ (R, (5 )]

In (3.1b), we chose x* =x; ,, and x}, | =Xx;, 5, then by
{3.14b) we obtain that

R (X yp)—ulx, i p =E; (x, 4 12) =0 )

Ri(x; ypy—ulx;_p, 1)=E;(x;_ 2y=00"" h.

Thus

1
Lj(ﬂ] =- E [f(u(xj+1/2: 1)) — flulx; - 129 Oyl +om ! ).

Hence in the smooth regions and away from sonic points,
the numerical spatial operators {L,(&)} approximate
{(8/01) &;(-, 1)} to the order O(h™*1).
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We specify x* in each [, in the following way: First we
compute f'(d;). Then

(i} i f'(@)>0wechose x*=x;.
(i) i f{u)<0wechose x}=x;_p,,
(i) if f'(id,)=0 we chose xF =x,, 1p0r X} =X;_1p.

In the cell I;is in the smooth regions and away from sonic
points, then in general f'(R(x))-f'(&,) >0 around the cell
I;; hence according to the above analysis

a = vt r

Euj(‘s 1)=L;(@)+ Ok, (3.15)
Because sonic points are isolated, in general, we obtain
{3.15) in most of the cells and obtain

a - el r
a“j(', 1y=L;(t1)+ O(h")

in a bounded, in fact small, number of cells near which there
are sonic points as A decrcases to zero.

Remark 2. We have achieved one order of improve-
ment in accuracy. For r =2 and r = 3* the cost of computing
of the weighted ENQ schemes is comparable to (of course,
a little more expensive than) that of standard ENO schemes
(with the same order of accuracy) on sequential computers.
However, on parallel computers, to achieve the same order
of accuracy, the former schemes are much less expensive
than the latter because the latter need more expensive data
transport between cells,

3.5. Schemes forr=2

The purpose of the following two subsections 35. and 3.6
is to spell out the details of the general schemes for two
specific values of », perhaps to aid the reader in implementa-
tion.

In this subsection, we consider our schemes when r = 2. In
this case we use linear interpolation to achieve the “ENO
property” and third-order accuracy (in our numerical
experiments, we achieved fourth-order accuracy) with
conservation form.

Here we give the reconstruction procedure for r=2. For
each cell [;, we have two stencils 8, = (x;_ 30, X, 172, X4 172)
and S;, = (x,.12, X;. 12, X;43p) corresponding to /,=
[x;_ 1525 X;4 1,2 )- On these two stencils, we obtain two linear
interpolations

P; (x)=ﬁj+&:%(x—x)

and
i, — U

p}+‘(x)=ﬁj+ n j(-x*xj),
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and two indicators of smoothness 1S;=(i;—u;_,)* and
S,y = (8, —,)" The reconstructed solution R, (x} will
be a convex combination of pi(x)and p}k, (x), ie,

j j

Rj(x)_ + jpj( X)+

Piwiix)  (3.16)

a0+fx’

where aj = C3/(¢+IS,)* and «f = C{ /(e + IS, ,)>. We shall
specify C} and C{ in the following two cases.

Case 1. If f'(it;) >0, we choose x*=x; S 12 We com-
pute aj(x;, ) =20" and al( }+1,2)— —h and obtain
n,=1and y,=1, hence Cj=1%and C}= 1. Thus

. 1
O
T e+ 15)
(3.17a)
Wi L
1 (£+]Sj+1)2
in (3.16).
Case 2. 1f /"(4;) <0, we choose x} = x;_,,. We com-

pute aj(x;_,,)=—h* and a(x;,_,»)=2h* and obtain
n,=1and #,=1; hence C{=1and C{=14. Thus

1
(e+15;)
1
e+ 1S,

J—
Ay =

(3.17b)

o]
n (3.16).

3.6. Schemes for r=73

In this subsection, we consider our schemes when ¥ = 3. In
this case we use quadratic interpolation to achieve the
“ENO property” and fourth-order accuracy (in our numeri-
cal experiments, we achieve fifth-order accuracy) with the
conservation form.

Here we give the reconstruction procedure for r=3. For
each [;, we have three stencils S;=(x; s, X;_3p2, X;— 125

;+1/2) S =(x Xi_372s Xj— 12> Xjg /2 ,-+3,'2) and S; i+2=
(X_ 2 X1 Xivap, xﬁ_s,z) corresponding to [;=
[X; 12, X;41,2) On these three stencils, we obtain three
quadratic interpolations

=uj—2uj_1 +t;

Pj(x) _2(x*xj71)2

2h*
i, il
g )
+ﬁ I,ﬁf_zaf_l-kﬁf_z
L

24
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Piaa(x) 2h’; I (x—x,)?
+ J+]2h =2 (x —x;)
_ ~2u.+u
+ . J
% 24
and
—2u, .+,
Pj+2(x)_ LS 2’1;-” J(x—xjuﬂ)z
TR u;
+—J+_ZT_(X x+1)
_ 2 2u +?J
+uj+1 _J+ 2'4+1 _],
and three indicators of smoothness IS, = ((#,_, — #;_,)*+
(g, —a, V)24 (=20, +i,_,)% IS;., = id,—i;,_)*+
(a4 “)2)/2 + (i, — 20+ )% and IS, , =
7 J

(( +1_H) +(ﬁj+2 }+1) /2+( Hiyo 2ﬁj+1+ﬁj)2. The
reconstructed solution R;{x) will be a convex combination
of pj(x), p;..{x), and P}+z(3c); ie.

of
Rj(x)——,:mpj() Aol Tal 5 P5a(x)
dj
mﬂ;u( x), (3.18)
where o) =Cj/(e+1S,)}, of=Ci{e+1S5;.,)® ai=

Ci/(e+1S,,,)>. We shall specify C},
following two cases:

C!, and C} in the

Case 1. If f'(i,) > 0, we choose x*=x;,,,. We com-
pute af{x; 10} = 6h°, ayfx;112) = — 2R, and_ ayx; )=
2h%, and obtain #,=2 and #,=1; hence Cj= 1‘2, Ci=3,
and C{=1 Thus

12(¢ + I5))
. 1
s
o] 2e+1S,.,) {3.19a)
. 1
A, =——
® T ae+ IS, )
in (3.18).
Case 2. If f'(&; )<0 we choose x* =X;_12. We com-
pute ao( ,fuz)d — 2R, a1( X;_12) = 2k, and aé(-xjfl,'?)::
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b=

—6h* and obtain 5,=1 and 5,=2; hence C}=}, C|=
and C{=&. Thus

»

. 1

e —

° 4e+1S)
1

o

fee—— 21.19b
R TPFN TN (3.198)
‘ 1
o=
12(e + IS, »)*

in (3.18),

4. NUMERICAL EXPERIMENTS

4.1. Scalar Conservation Laws

In this subsection we use some model problems to
numerically test our schemes. We use the Roe flux with
entropy fix as numerical ftux and chioose r= 2 which means
we use a linear polynomial o reconstruct the solution and/or
r=23 which means we use a quadratic polynomial to
reconstruct the solution, and we expect to achieve third-
and fourth-order accuracy, respectively (at least away from
sonic points), according to our analysis in the previous
section.

ExaMpLE 1. We solve the model equation

ul+ux=0’ —ISXSI

4.1
u(x, 0) = ug(x), ug(x) periodic with period 2. *h
Five different initial data u,(x) are used. The first one is
uo(x) =sin(mx) and we list the errors at time t = 1 in Table L.
The second one is uy(x) =sin*(nx) and we list the errors at
time ¢ =1 in Table II. Here and below / is the total number
of cells and the step size A = 2/ in all scalar examples.

TABLEI
th=08, =1
{ L, error L, order L error L, order
r=2
80 2.77D-03 1.21D-02
160 1.98D-04 3381 1.E1D-03 345
320 1.06D-05 4.22 4.30D-05 4.70
r=3
8O 2.28D-05 1.03D-04
160 9.65D-07 4,56 7.85D-06 in
320 1.71D-08 582 1.41D-07 580
640 6.07D-10 482 1.33D-09 6.73
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TABLE 1
t/h=08,t=1
i L, error L, order L., error L, order
r=2
80 1.77D-02 7.31D-02
160 3.08D-03 252 1.86D-02 1.94
320 2.46D-04 3.65 2.04D-03 319
640 1.42D-05 4.11 9.28D-05 4.46
r=3
80 2.17D-03 6.87D-03
160 L13D-04 4,26 3.93D-04 391
320 3.71D-06 4.93 3.25D-05 5.2
640 6.39D-08 5.86 6.63D-07 5.62

For the first two initial data, we obtain about fourth- (for
r=2) and fifth- (for r = 3) order of accuracy, respectively, in
the smooth regions in both £, and L, norms which is sur-
prisingly better than third- and fourth-order, the theoretical
results. We note that standard ENO schemes applied to the
example with the second initial data experienced an {easily
fixed) loss of accuracy; see [6, 7]. No such degeneracy was
found with our present methods.

The third initial function is

1 —it<xgl
tp(x) =4~ STEUES
0, otherwise,
the fourth is
wy = { OB = g<xsh,
0 0, otherwise;

The sedution by WENO ot T = 0.5
T T r T -ty

+ +
+ +

[LE:] 3

{LEF * * L

Number of Pointa = §0
o a o
- ia o
Ll T T
" n

=]

L
T

1

+ +

a1
( y *

e
02

1 -0.8 0.6 -04 -0.2 0
-« uo salu

04 06 03 1
++ approx, solu £=3

FIG. 1. w/h=03.
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The solution by WENC a1 T = 0.5

o7 4

Nurmber of Poins = 80
o (=] (=] (=]
$ & 8 858 8
o —— T T
A A A

o
%
T

'

=
]
T
S

o

[
T

"

* +

(1 FEUPRTETU I -+ e ).n:.t+ " " b

G 68 D6 04 02 0 02 04 05 03 1

maewcl 4+ appror. iy T=3
FIG. 2. t/h=08,
and the fifth is
Ug(x) = e 300,

We see the good resolution of the solutions in Figs. 1-3
which are obtained by our scheme with r = 3. Linear discon-
tinuities are smeared a bit. We expect to fix this in the future
using cither the subcell resolution technique of Harten [ 10]
or the artificial compression technique of Yang [11]
together with the present technigue.

ExaMPLE 2. We solve Burgers’ equation with a periodic
boundary condition,

2
u +(3u°), =0, —-1g<x<1

e L 42)

ul(x, 0) = uy(x), tglx) periodic with period 2.
The solation by WENO &t T = 0.5
1 —— - — v v

a9 E

08 P

97 1
£
n 0.6 b
:
& asf g
a
'g 04 -
-1

03fF 1

o.2|- 4

0.1p b

St Bl bbb bbb -hrd-hbads TETEFSEEVEPFEN] e ﬁ+l P /vy Ll
AR ALY’V MV R ¢ ) 02 04 06 08
—-tuosole  ++ approx. solu =3
FIG. 3. t/h=08.
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TABLE III
th=06, r=0.15
{ L, error L, order L error L, order
r=3
80 263D-05 284004
160 1.50D-06 4.13 2.68D-05 341
320 5.44D-08 4.79 3.63D-07 6.21

For the initial data ug(x) = 1+ sin(mx), the exact solution is
smooth up to ¢=l/x; then it develops a moving shock
which interacts with a rarefaction wave. Observe that there
is a sonic point.

At t=0.15 the solution is still smooth. We list the errors
in Table II1. Note that we also have about fifth- (for r =3)
order of accuracy respectively both in L, and L norms.

At 7=1/n the shock just begins to form; at t=0.55 the
interaction between the shock and the rarefaction waves is
over and the solution becomes monotone between shocks,
In Figs. 4-5 which are obtained by our scheme with r =3 we
can see the excellent behavior of the schemes in both cases.
The errors at a distance 0.1 away from the shock (ie,
|x —shock locatton) 2 0.1) are listed in Table 1V at 1 =055,
These errors are of same magnitude as the ones in the
smooth case of Table IIT show about fifth- (for r =3) order
of accuracy respectively both in L, and L, in the smooth
regions 0.1 away from the shock. This shows that the error
propagation of the schemes is still very local.

ExaMpPLE 3. We use two nonconvex fluxes to test the
convergence to the physically correct solutions. The true
solutions are obtained from the Lax—Friedrichs scheme on

The solution by WENO at T = 03183

1.5 —— —_— -
lr- 4
+
2
1]
2
= Q5
s ]
y]
g
3
o ]
Q5 —— —

-1 -08 0.6 -0.4 0.2 0 02 04 06 0.3 1
--truesolv  ++ approx. soly r=3

FIG. 4. t/h=046.
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The salution by WENCQ a1 T = 0.55

=80

Number of Points

-DA 02 0 02 04 0.6 08 1
--ttuosaly  ++ approx. solu r=3

0.6

FIG. 5. +/h=06.

a very fine grid. We use our scheme with r = 3 in this exam-
ple. The first one is a Riemann problem with the flux f(u) =
1(u? — 1)(u* —4) and the initial data

x<0
x>0

uo(-’c)={ul,

U,

The two cases we test are (i) w,=2, u,= —2, Fig. 6; (ii)
u=—3, u,=3, Fig. 7. For more details concluding this
problem see [2].

The second flux is the Buckley—Leverett flux used to
model oil recovery [2], f(u)=4u*/(4u” + (1 —u)?), with
initial data « =1 in [ — 3, 0] and u =0 clsewhere. The result
is displayed in Fig. 8. In this example, we observe con-
vergence with good resolution to the entropy solutions in
both cases.

In all the examples that we have illustrated above, we
observe that the schemes are of about fourth- (for r =2} and
fifth- {for r=3) order of accuracy, respectively, and con-
vergent with good resolution to the entropy solutions.

TABLE IV
th=0.6,1=055
1 L, error L, order L, error L, order
r=3
80 2.29D-05 7.63D-04
160 7.71D-07 489 3.83D-05 432
320 741D-09 6.70 7.27D-07 5.72

0025

h=

0.025

=

h =0.025

The solution by WENO s T = 1
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0.5 B
°
0 -
s
0.8 E
1 i
1.5 4
-2 — —_— !
-1 0.8 0.6 0.4 0.2 ¢ 0.2 04 0.6 0.8 1
--true solu oo approx. solu  1=80
FIG. 6. t/h=0Q3.
The solution by WENO at T = 0,04
3 — ———— — - T T
2
1+
o}
Ak
2k
3 N
-1 -0:8 -0.6 -0.4 0.2 o 0.2 0.4 0.6 0.8 1
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FIG. 7. 1/h=004.
The solution by WENO at T =04
1 — — —r— ——
0.9k 4
0.8 4
07} 4
0.6 4
0.5+ b
041 -
03} 4
02} t |
N f""‘: l
0 I " i s 1 &
-1 -0.8 -0.6 0.4 0.2 0 0.2 04 0.6 0.8 1
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FIG. 8. 1/h=04.
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TABLE ¥
tth=06,1=1
{ L, error L, order L, error L order
Density
80 1.99D-04 1.29D-03
160 1.21D-05 4.03 1.15D-04 349
320 1.74D-07 6.12 2.07D-06 5.80
640 2.92D-09 5.90 320D-08 6.02
Momentum
80 2.17D-04 1.76D-03
160 1.29D-03 407 1.50D-04 3.55
320 1.85D-07 6.12 2.43D-06 595
640 3.09D-09 590 31.20D-08 6.25
Energy
80 2.10D-04 1.92D-03
160 1.19D-05 4.14 1.60D-04 359
320 1.55D-07 6.26 2.57D-06 5.96
640 2.75D-09 5.82 3.10D-08 6.37

4.2. Ewler Equations of Gas Dynamics
In this subsection we apply our schemes to the Euler
equation of gas dynamics for a polytropic gas,
u+ f(u) =0
u=(p,m, E)T
fw)=gu+(0, P, ¢")"

P=(y—1)(E-3pq’)
n = pq,

(4.2)

where y = 1.4 in the following computation. For details of
the Jacobian, its eigenvalues, eigenvectors, etc., see [2].

ExaMpPLE 4. We consider the following Riemann
problems:

() = u, x<0

o U, x=>0.

Two sets of initial data are used. One is proposed by Sod
in[8]:

(P g P)=(1,0,1),  (p.. g, P,)=(0.125,0,0.1).
The other is used by Lax [9]:

(P, @1 P,) = (0.445, 0,698, 3.528),
(pn qU Pr) = (0.5, 0, 0571)
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We test our schemes with r = 3. We use the characteristic
reconstruction and Roe flux with the entropy fix formed by
Roe’s average as the numerical flux. For details see [2]. The
results are displayed in Figs. 9 and 10.

ExaMFLE 5. In this example we shall test the accuracy
of our schemes (r=3) for the Euler equation of gas
dynamics for a polytropic gas. We choose initial data as
p=2+sin(rx), m=2+sin(nx), and £=2 +sin{zx), and
the periodic boundary condition. The true solution was
obtained by appiying the schemes to a very fine grid. For
time t=1 when shocks have not formed, our schemes

Commry

x3

23k

T

¥ -8 0.0 -4 o o.e a.s 1

0.2 Q o2
Tos Numbar of Poaes = 100

Momertuas

-1 B} 0.8 <4 0.4 o o ]

0.2 o a3
Ther Nuamvieer of Foicas = 100

FIG. 11. (a) 7/h=06,1=1;(b) t/h=06, t=1; (c) t/h =06, t = .
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achieve fifth- (r = 3) order accuracy in ali three components,
see Table V. We can also see the solution for time =1 in
Fig. 11. :

ACKNOWLEDGMENT

We are gratelul to Professor Chi-Wang Shu for his suggestion of the
smooth indicator function, i.e.,

=170
5= % (Z (1o P o /A
=1 &

} =1

instead of

r—1 I

15,= % ( T4 a0
=1 Nk=1

which we used originally. Both functions work well; however, the latter one

leads to a smoother (C™ vs. Lipschitz} numericai flux which may be helpiul

for steady state convergence of convergence proof.

LIU, OSHER, AND CHAN

REFERENCES

t. A Harten and 8. Osher, SIAM J. Numer. Anal. 24, 279 (1987); MRC
Technical Summary Report No. 2823, May 1985 (unpublished).

2, A. Harten, B, Engquist, S. Osher, and S. Chakravarthy, J. Comput.
Phys. 71, 231 (1987); ICASE Report No.86-22, April 1986
(unpublished).

3. C.-W. Shu and S. Osher, J. Comput. Phys. 77, 439 (1988).
4. C.-W. Shu and S. Osher, J. Compur. Phys. 83, 32 (1989).

. A. Harten and 8. Chakraverthy, UCLA CAM Report No. 91-16,
August 1991 (unpublished).

6. A. Rogerson and E. Meiburg, J. Sei. Comput. 5 (2), 151 (1990),
7. C.-W. Shu, J. Sci. Compur. 5 (2), 127 (1990).

8. G. Sod, J. Compus. Phys. 27, 1 (1978).

9. P. Lax, Commun. Pure Appl. Math. 46, 1 (1986).
10. A. Harten, J. Comput. Phys. 83, 148 {1989).
11. H. Yang, J. Compu:. Phys. 89, 125 (1190).

h4



